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1 Implementation Details for DSCMP

We conduct experiments on three commonly used dataset (ETH [6], UCY [5],
SDD [7]). Both the dataset ETH and UCY involves a single class of agent, pedes-
trian, in the crowd. For fair comparison with other state-of-the-art methods [1,
2, 10, 8, 4], we adopt the same time duration of observation (3.2s) and prediction
(4.8s) in these two datasets. Hence, the results on the datasets ETH and UCY
are reported together.

There are two kinds of mode to process the input location in the prediction
phase. (mode-a) The ground truth at current frame is used as the current input.
(mode-b) The predictions generated by the previous frame is used as the current
input. During the training phase, we firstly train our model in mode-a for 200
epoches, and then employ mode-b for 150 epoches. During the testing phase, only
the mode-b is used since the ground truth in the prediction phase is unavailable.

Instead of mapping the Cartesian coordinates to high dimensional vectors
before sending to LSTM like many methods, we directly use the relative coordi-
nates as input since we found it is experimentally efficient. During the prediction
phase, we forecast the displacement relative to the previous moment, and then
the whole predicted trajectory is generated by adding up the displacement at
the last observed location.

Although the labels of scene layout are not provided in the aforementioned
datasets, we extract the visual feature by pre-trained PSPNet [11, 9] off-line as
prepossessing. The semantic maps are treated as additional input to our proposed
model DSCMP. As shown in Fig.1, we show some of the semantic maps extracted
in the scene layout.

2 Parameters Comparison and Speed Analysis

In this section, we compare the parameter usage and inference speed with state-
of-the-art methods. The inference speed is reported as the testing samples per
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Fig. 1. Example of semantic map extracted in different scene layouts.

Table 1. Quantitative comparisons on the number of parameters and inference speed
. ↓ denotes smaller value is better and vice versa. “Rel.” and “Params” is the abbrevi-
ation for “relative” and “parameters” respectively. Experiments are conducted on one
NVIDIA GeForce GTX 1080 Ti graphics card.

Methods LSTM [3] S-LSTM [1] SGAN [2] STGAT [4] Ours

Params ↓ 14.76k 85.26k 36.39k 44.63k 24.03k

Rel. Params ↓ 0.17x 1x 0.43x 0.52x 0.28x

Speed ↑ 125.9 12.27 42.5 27.8 30.8

Rel. Speed ↑ 10.26x 1x 3.46x 2.27x 2.51x

second. We conduct multimodal predictions for 20 times for each sample. As
shown in Table 1, long short term memory (LSTM) enjoys small consumption of
parameters and high inference speed. However, as discussed in our main paper,
LSTM has unsatisfactory performance since it not only ignores the complicated
interactions across agents in both spatial dimension and temporal dimension, but
also neglects the scene information. S-LSTM [1] is set as unit 1 for comparisons
among social-aware methods. The occupancy grids in the S-LSTM cause heavy
usage of parameters and long inference time. SGAN [2] makes improvements with
a spatial-aware pooling mechanism, which accelerates the inference time. Because
STGAT [4] has a multi-head graph attention module and dual LSTM modules
in the encoder, it has more consumption of parameters and time compared with
SGAN.

In the DSCMP, our proposed queues introduce a few extra parameters in
Individual Context Module (ICM) compared with vanilla LSTM cell. Addition-
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Fig. 2. Top row: multimodal predictions generated by predefined Gaussian noises
N (0, 1). Bottom row: multimodal predictions generated by our scene-guided latent
variables N (µ, σ). Zoom in three times for the best view.

ally, the parameters in the Social-aware Context Module (SCM) are shared across
spatial dimension and temporal dimension. Therefore, our proposed DSCMP is
lightweight in space, which is mobile-friendly for applications like self-driving
vehicle and autonomous mobile robot. On the other hand, the inference speed
of SGAN is fastest among its counterparts, whereas SGAN does not model the
temporal dependencies in social interactions.

Followed by previous methods [2, 8, 4], we treat all agents in the same scene
as neighbors for each agent. Although the importance of differnt neighbors are
adaptive via Social-aware Context Module (SCM), the computational complexity
for pair-wise relations is high. Detecting high-impact neighbors for each agent,
and then use the high-impact neighbors only to compute social interactions are
supposed to make improvements in speed.

3 Compared with Predefined Gaussian Noise

In order to obtain diverse predictions, most of the existing methods [2, 10, 8,
4] fuse the hidden features in the RNN with vectors sampled from predefined
Gaussian noises N (0, 1). However, the multimodal predictions generated by pre-
defined noises suffer from contextual reasoning. In the main paper, we visualize
the multimodal predictions and corresponding probabilistic distributions. In this
section, we supplement the comparisons between the performance of predefined
Gaussian noises N (0, 1) and the scene-guided latent variable N (µ, σ).

As shown in Fig.2, we observe that the multimodal predictions in the top row
are randomly distributed with high uncertainty. Some of the predictions even
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Table 2. Quantitative comparisons on the new metric Temporal Correlation Coefficient
(TCC) in single prediction and multimodal predictions.

Methods 1.0 sec 2.0 sec 3.0 sec 4.0 sec Avg.

S-LSTM 0.83 0.72 0.63 0.57 0.69
SGAN 0.83 0.71 0.64 0.59 0.69
STGAT 0.87 0.71 0.63 0.58 0.70
Ours (k=1) 0.88 0.73 0.66 0.61 0.72

S-LSTM 0.86 0.76 0.68 0.63 0.73
SGAN 0.88 0.78 0.70 0.65 0.75
STGAT 0.88 0.78 0.69 0.64 0.75
Ours (k=50) 0.89 0.79 0.71 0.67 0.77

crosses physically unfeasible areas. For example, in the top row of example 3,
some predictions are much shorted than ground truth. Moreover, in the top row
of example 4, some of predictions generated by N (0, 1) traverse the parterre and
roadblock. It is understandable since the predefined noise does not support for
the reasoning about surrounding scene. In contrast, the multimodal predictions
by our model are physically plausible with low uncertainty. It verifies that the
multimodal predictions benefit from the semantic context of static scene layout
further.

4 More Evaluations on the New Metric TCC

In the main paper, we plot the the proposed new metric Temporal Correlation
Coefficient (TCC) in multimodal predictions (sample times k= 20) for various
methods. Here we provide more evaluations of TCC in both single prediction
(sample time k = 1) and multimodal predictions (sample times k = 50). In
the multimodal predictions, we sample the prediction that have lowest ADE
with ground truth to compute the TCC. The prediction duration ranges from
1 second to 4 second. As shown in the Table 2, the metric TCC in our method
is higher than other state-of-the-art methods regardless of prediction duration
and sample times. It shows that the temporal correlation of ground truth is well
captured be our method. In addition, the TCC in multimodal predictions (k=50)
is consistently higher than the value in single prediction (k=1) for different
methods and different prediction duration. It demonstrates that the predictions
which are close to the ground truth in Euclidean distance are usually learn the
temporal correlation strongly.

5 Description for the Video Demo

In the video demo, we provide the predictions generated by our DSCMP in
different scenarios. Blue lines and red lines denote the observed trajectories and
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ground truth, respectively. The predictions are represented in orange lines. From
the video, our DSCMP is capable of making real-time predictions for multiple
agents in the crowd, where the spatio-temporal interactions are active and the
scene layout is complicated. The future movements for both the short trajectories
(e.g. pedestrians) and long trajectories (e.g. cyclists) are well predicted.
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